Monthly Technical Report

PROJECT TITLE	Constraining NO _x Emissions Using Satellite NO ₂ Measurements Over The Southeast Texas	PROJECT #	14-014
PROJECT PARTICIPANTS	University of Houston	DATE SUBMITTED	6/8/2015
REPORTING PERIOD	From: May. 1, 2015 To: May. 30, 2015	REPORT #	1
	University of Houston	Invoice # N/A	Amount \$0.00

A Financial Status Report (FSR) and Invoice will be submitted separately from each of the Project Participants reflecting charges for this Reporting Period. I understand that the FSR and Invoice are due to the AQRP by the 15th of the month following the reporting period shown above.

Detailed Accomplishments by Task

- 1. Finished inverse modeling to update NOx in NEI2011. The new inventory is named as NEI2011n
- 2. Finished CMAQ simulations with NEI2011n and calculated ozone statistics.
- 3. Evaluated model tropospheric NO₂ column using satellite NO₂ column.

Inverse Modeling

The Bayesian inversion was used to update the emission parameters of NOx using OMI NO₂ data, with CMAQ simulation as the forward model. In the inverse model, NOx emissions are separated into four sectors: area, biogenic, mobile and point sources. The relationship between the observation vector y (here OMI) and state vector x (here emissions) can be described as:

$$y = Kx + \varepsilon$$

where the K matrix (Jacobian matrix) represents NOx sensitivities to the state vector defined by CMAQ model, and ε is the error term. In order to calculate the Jacobian matrix for each sector, we made use of the Brute force method. According to this approach, sensitivity is measured based on the corresponding gas concentration (NO₂) changes in respect to emission changes (NOx). Mathematically expressing, the sensitivity can be given by:

$$S = \frac{NO_2^{+d} - NO_2^{-d}}{2d}$$

where *d* is the fraction of change, and NO₂ is the simulated tropospheric NO₂ column. We set *d* to 100% which means two simulations with double NO_x emissions and without the NO_x emissions have been conducted for each sector.

The uncertainties for each sector were set to 50% for area, mobile and point sources and to 300% for biogenic emission. The uncertainty for OMI was 1.4×10^{15} molec.cm⁻² based on Bucsela et al., (2013). Then a posteriori state (\hat{x}) vector can be computed by:

$$\hat{x} = x_a + (K^T S_{\varepsilon}^{-1} K + S_a^{-1})^{-1} K^T S_{\varepsilon}^{-1} (y - K x_a)$$

where x_a is the a priori state vector, S_a is the estimated error covariance matrix for x_a , and S_{ε} is the error covariance matrix for observation errors.

Old and Updated NOx Emissions by Sector

The old and updated NOx emission by sector is shown in figure 1. The top row plots are for old (priori) NOx emission while bottom row shows the updated (posteriori) NOx emission. The four plots in each row represent the four sectors: area, biogenic, mobile and point (from left to right). In updated emission, NOx decreased in three anthropogenic sectors and increased in biogenic sector. Both reduction and enhancement have not occurred evenly over the domain.

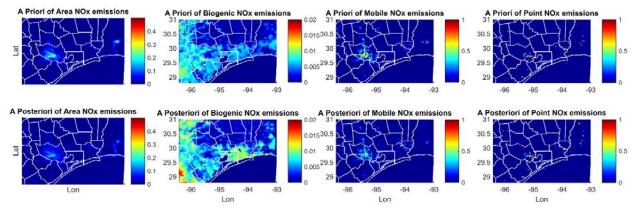
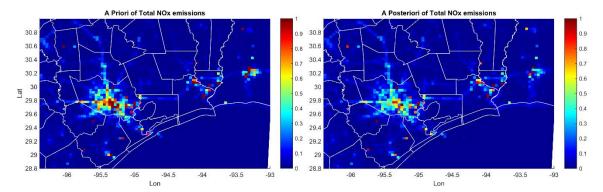



Figure 1. Old (top row) and updated (bottom row) NOx emissions.

The old and updated total NOx emission is shown in figure 2.

Figure 2. Old (left) and updated (right) total NOx emissions.

Surface Ozone Statistics Using NEI 2011 and NEI 2011n

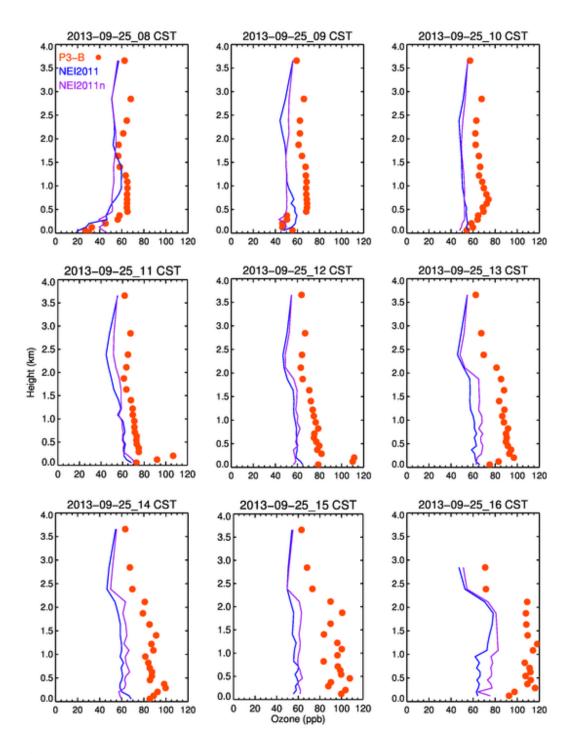
We have finished a pair of CMAQ simulations with NEI 2011 and NEI2011n over Southeast Texas. The meteorology is "1Hr-Objective Analysis (OA)" case. In this meteorology, OA is run at 1-hr interval input.

The statistics for ozone is shown in Table 1. The statistics are based on CAMS data.

Case	N	Corr	IOA	RMSE	MAE	MB	O_M	M_M	O_SD	M_SD
NEI2011	33308	0.74	0.79	14.6	12.0	9.3	24.4	33.7	16.5	14.2
NEI2011n	33308	0.76	0.80	14.4	11.7	9.2	24.4	33.7	16.5	15.2

Table 1 Statistics of hourly surface ozone

 N – data points; Corr – Correlation; IOA – Index of Agreement; RMSE – Root Mean Square Error; MAE – Mean Absolute Error; MB – Mean Bias; O – Observation; M - Model; O_M – Observed Mean; M_M – Model Mean; SD – Standard Deviation

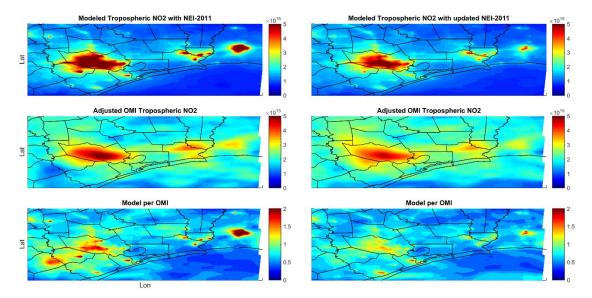

• Units for RMSE/MAE/MB/O_M/M_M/O_SD/M_SD: ppb

It can be seen that the updated emission slightly improved surface ozone statistics, with correlation increased by 0.02 and IOA by 0.01. The mean bias shows a small decrease.

Ozone Vertical Profile from Aircraft Measurement

Ozone aloft were compared to measurements from NOAA aircraft P3B. The comparison of aircraft data with model results is more complicated since the aircraft is moving in a 3-Dimensional space. To compare model to observations, we need to find the model data matching the location and time of aircraft point measurement. We have developed in-house codes to match model results with aircraft and ozone-sonde measurements. Since aircraft data have much higher frequency than model output, we aggregated all the aircraft data points in one grid cell during 1-hour period to match model output.

Figure 3 shows the modeled vertical profiles and the measurements (red dots) on 09/25/2013. Nine hourly profiles are displayed to give the ozone evolution from ground up to 4-km height. The updated NEI20011n case underperformed the original NEI2011 one only in the first plot (08 CST). Its performance in the 2nd plot (09 CST) is generally better, underperforming only in a small section: 400-1000m height. The updated case outperformed the original one in all following hours (10-16 CST), sometimes reducing the bias by over 10 ppb.


Figure 3: Ozone vertical profile – modeled vs. measurements; measurements are aggregated over model grid cells and averaged hourly

CMAQ and OMI NO₂ Comparison

By using the profile of simulated NO₂ and the height of tropopause from OMI data, the simulated tropospheric NO₂, which is the sum of partial NO₂ concentrations from the surface to top of the troposphere, is calculated. The simulated tropospheric NO₂ using the original NEI2011 and the updated one are compared to OMI tropospheric NO₂. Figure 4 shows the spatial NO₂ from original NEI2011 (top left) and NEI2011n (top right). The second row of the figure depicts OMI tropospheric NO₂ which has been adjusted for conducting an apples-to-apples comparison based on

the simulated tropospheric NO_2 . The third row demonstrates the ratio of simulated tropospheric NO_2 to OMI tropospheric NO_2 . High values in ratio means overprediction of the model and vice versa.

Indeed, the updated NO₂ matched better with OMI data. This is also expected as OMI data are used to modify the original NEI2001.

Figure 4: Comparison between NO₂ columns (average over September of 2013). Left – NEI2011; Right – NEI2011n

Identify Problems or Issues Encountered and Proposed Solutions or Adjustments

We have not encountered any problems in May.

Goals and Anticipated Issues for the Succeeding Reporting Period

We expect to finalize all the analyses and prepare for the final report.

Detailed Analysis of the Progress of the Task Order to Date

The completion of each of the project tasks and the draft and final reports are expected to be on the schedule from the Work Plan schedule.

Submitted to AQRP by: Yunsoo Choi

Principal Investigator: Yunsoo Choi